English Notes on Typesetting Japanese with pTEX

7 4. xT—/)L ptex(at)nihilist.org.uk

PR A TR

Contents
I Introduction
2 Changelog

3 Acquiring and installing pTEX
3.1 InstallationonLinux,

4 Entering Japanese text
4.1 Encodings L
4.2 JWPceo
4.3 AdobeReader
4.4 Japanese Fonts HARGEDTAR

5 Other Japanese-Capable TEX Systems

6 Creating a document
6.1 PlainpTEX e
6.2 PpBIEX o e

7 Viewing documents
7.0 dvipdfmx Lo
7.2 dvipsy oL e
7.3 dvipsk oL

8 PDF bookmark entries

9 Installing new kanji fonts 10

9.1 Available fonts 10
9.2 Installinginto pTEXo oo I1
0.3 dvpdfimx 1
0.4 dAvips . ..o 12
10 Vertical typesetting 13
11 Ruby 14
1.1 Rubyin pBITEXo 4
1.2 Rubyinplan pTEX 0oL o 15
11.3 Ruby in plain non-pTEXo 16
12 Circled characters 16
13 dvipdfmx and PSTricks effects 17
14 Context 18
15 Mixing vertical and horizontal text 18
16 Kanji font selection in BTEX 20
17 Missing font shapes 22
18 Underlined Japanese text 23
19 Warichu 24
20 References 24

I Introduction

The program pTEX from ascit Media Works is an effective tool for typesetting
Japanese. Unfortunately I've never been able to find much in the way of English
documentation for pTEX. This document gathers together the knowledge I've accu-
mulated on pTEX through web-searching, inspired guesses, hair-pulling, inspecting
code and doing my best to make sense of the Japanese documentation.

In this document I assume you are using Microsoft Windows. If you use Linux
then you will be sufficiently computer-literate to apply what is written here to your
enviroment. Macintosh users might also find some of the information here useful. I

have tried the Macintosh distribution of pTEX and it works well. I also assume that
you are familiar with using the Ms-pDos command-line interface and basic tools like
gzip and tar.

2 Changelog

2010/03/25: Corrected capitalization of PostScript, corrected explaination of H for
CMap resources, clarified Unicode’s status as a character set rather than an encoding,
corrected reference to Ken Lunde’s book CJKV Information Processing, corrected use
of term ‘furigana’ to the typographic term ‘ruby’. [All these corrections were kindly
pointed out by Ken Lunde]. Changed typographical presentation of names like
Tex to use more typographically elaborate names like TEX. Removed dead links.
Updated link to W32TeX site. Removed ‘New Material’ section. Various minor
adjustments.

2006/11/05: Added note on ruby in plain non-pTEX. Tidied up the ruby section.
Added a note on jTEX.

2006/10/29: Added note on ruby in plain pTEX.

2006/10/21: Added notes on warichu. Changed typewriter font so that the docu-
ment looks prettier in Adobe Reader.

2006/06/08: Added notes on: Linux installation of pTEX; XHTEX.

2005/11/20: Added notes on: use of alternative kanji fonts with IETEX font selection
scheme; suppressing font shape warnings; ZEt# (schoolbook) fonts.

2005/11/11: Initial revision

3 Acquiring and installing pTEX

Point your web browser at www.w32tex.org[1]. This is the download site for
W32TeX. There is an English version of the page. A good thing about this instal-
lation is that the maintainer updates it every few days. Download all the packages
from the Basic and Standard Installation sections. If you fancy any of the packages
in the Full Installation section then download those too.

One of the things I like about W32TeX is that the packages are just gzipped tar
files. The installation includes an installer but you can just gunzip all the files and
tar -xvf them yourself. My W32TeX installation takes up about 25omsB of disk
space.

Once you've done this you’ll need to add c:\usr\local\bin to your path and
modify the texmf.cnf file to reflect your system. Of course, the details of this are
outside the scope of this document.

If you are reading this document then you are probably already familiar with TEX
and therefore probably already have a TEX system installed. If you can get pTEX to
work on your existing installation then I’'m happy for you. I never managed to do
it. For a while I had a TEX Live installation running alongside a pTEX installation.
This worked fine; I just had to change my path when I was using Japanese so that
I picked up the W32TeX binaries instead of the TEX Live binaries. Eventually I
migrated to W32TeX. W32TeX is what most Japanese people seem to use. The
good thing about W32TeX is that it handles Japanese without needing any extra
configuration.

As an aside, pIATEX seems to be more popular in Japan than BTEX is in the West.
In Japan I see a few books on pIBTEX in most larger book shops.

3.1 Installation on Linux

You need to find the extra packages for your distribution that include pTEX. You'll
also need Adobe Reader or xpdf with the Japanese support package; a Japanese
font, such as kochi-mincho.ttf; and dvipdmx. Once all these are installed you can
compile documents that are in Shift-jis format by running

ptex -kanji=sjis myfile.sjs

This will probably work. However, when you dvipdfmx myfile.dvi you'll proba-
bly get a failure.

I fixed this by copying the contents of the cmap directory in my W32TeX in-
stallation to my Linux installation. Then I updated texmf . cnf via

/etc/texmf.d/<somefile>
and
update-texmf

(this seems to be a feature of teTEX) to point at the directory in my installation that
contains my TrueType fonts (/usr/share/fonts/truetype//). Finally I updated
x-cid.map to add the line

rml H kochi-mincho

H refers to something called a CMap resource. You’ll find it in the cmap directory
you copied over.

4 Entering Japanese text

4.1 Encodings

In the world of computers all data is stored as numbers. You will already know
that the characters a—z, A—Z, 1—9 and some punctuation marks are represented by
numbers between 0 and 127. The number used to represent each character is defined
by the ASCII standard’. Because we only need the numbers between o and 127 to
represent plain English we can store each character in an English text file as a byte.
Languages such as French and Czech that include accented characters can also be
represented by text files that use just one byte for each character. However, to
represent the accented characters they also make use of the numbers between 128
and 255. You may already know that there is no one standard for the characters
represented by the numbers between 128 and 255; the character that is represented
by one of these numbers is defined by the encoding that is being used.

This state of affairs is reflected in the development of TEX. When Knuth first
released TEX each font had 128 character slots. A later version gave each font 256
character slots, thus enabling people to use the full width of a byte to represent
character.

Japanese has far more than 256 characters. Therefore we need to use bigger
numbers to represent the characters. This is typically achived by using multiple
bytes to represent each character. Using two bytes provides us with 65,536 slots
to put characters in. This is enough even for Japanese. However, the details of
representing complex writing systems in computers is rather more complex than
this. Full details are beyond the scope of this article and can be found in [2].

One might think that using multiple bytes to represent the world’s most be-
wildering writing system is complex enough. However, as is usually the case with
software, we have another layer of complexity: there is no one standard encoding for
representing Japanese characters. The most common ones are Shift-Jis, 150-2022-]p
(‘718”), EUC-JP and the various encodings of the Unicode character set such as UTE-8,
UTF-16 and UTF-32.

Unicode and its encodings are the closest we have to an industry-wide standard
for encoding the written word. A disadvantage of the UTF-16 and UTE-32 encodings
of Unicode is that if you send Japanese text encoded in one of these formats to a
destination that can read ascit but not Unicode then the recipient cannot read any
of the text. This would be particularly unfortunate if there were only a few Japanese
characters in the message. This is the advantage of the UTF-8 encoding; it keeps
all the asct characters as single bytes of asci. The disadvantage of UTE-8 is that it

'IBM mainframes use a character encoding called EBCDIC, which does not represent consecutive
letters by consecutive numbers. I've never seen EBCDIC used with TEX.

uses significantly more bytes than UTF-16 to encode the same number of non-asci
characters. UTE-32 is inefficient in its use of space and is rarely used.

The j1s encoding was devised in Japan; it stands for Japanese Industrial Standard.
This system has the same disadvantage as Unicode in that Western characters will not
survive if the Jis text is displayed on a jis-incapable device. Thus Shift-Jis (sometimes
written s-J1s or sJ1s) was devised. Confusingly, it was devised by a Japanese company
called ascit Media Works in collaboration with Microsoft. Microsoft adopted this
encoding (in a slightly modified form) so it is widely used. asc Media Works
also produced pTEX so, not surprisingly, the native encoding of pTEX is Shift-Jis. I
always use Shift-J1s unless I have a good reason to do otherwise.

I don’t know anything about the Euc-Jp encoding except that it tends to be
used on UNIX systems. For information on the EuC-JP encoding and comprehensive
information on handling Chinese, Japanese, Korean and Vietnamese on computers
see [2].

4.2 JWPce

Western versions of Microsoft Windows xP and above include a Japanese text entry
system; you just need to fiddle with the settings in the Control Panel to get it
working. It works with Notepad and if you’re lucky it might work with your
favourite text editor. Powerful though this input method is, it is more aimed at
native Japanese speakers than students of the language.

Much better for people like me is Jwrece[3]. It’s a free download and comes
with plenty of help and documentation. Features that are useful for students include
the built-in dictionary and the built-in kanji information look-up. It also has three
Japanese fonts built into it.

Download JWPce from [3] and install it. When you save your TEX source use
the Shift-JIS encoding (.sjs).

4.3 Adobe Reader

You will probably want to view your pTEX creations as PDE files. If you don’t already
have Adobe Reader installed, install the latest version. Also install the Japanese
language pack. The fonts included in this language pack are enough to get you
going with pTEX. You don’t even need the Windows Japanese fonts.

In Japan people seem to use a DVI previewer called Dviout. It is also possible
to run a Japanese-enabled version of dvips (see below) and view the results using
Ghostview.

4.4 Japanese Fonts H AFEDFIK

If you want to view your pTEX output as PostScript then you will need to install
the Windows Japanese fonts. You can do this from the Control Panel. The fonts are
called msmincho.ttc and msgothic.ttc. Yes, it is counter-intuitive to need TrueType
fonts to view a PostScript document.

5 Other Japanese-Capable TEX Systems

There is a BTEX package called cjk that provides another way to typeset Japanese
text in TEX. It allows you to typeset Korean and Chinese as well as Japanese. It has
documentation in English.

The future of polyglot TEX typesetting appears to lie with XgTEX. This system
has now been ported from the Macintosh OS X platform to both Linux and Win-
dows. The Windows installation is done as a bolt-on to W32TeX; the W32TeX
download site includes a binary package and English installation instructions. I have
got both these systems up and running. The Windows installation took a matter of
minutes. XHITEX is now also available with TgX Live.

There is a Japanese version of a program called Omega, a version of TEX that
can handle 16-bit encodings. There seems to be little activity or documentation on
this project.

JTEX is an early (c.1987) Japanese-enabled TEX variant created by NTT. It is still
available for download but has been largely superseded by pTEX. An article on the
development of this package has been published in TUGboat[4].

The ums package allows you to put Japanese text in a file that is to be compiled
by pdfTEX or pdfIBETEX. You use it by producing a Shift-]IS source file, running this
file through a program called topdftex and the sending the result to pdfIETEX with
the uMs package included. One reason for doing this rather than using pTEX and
dvipdfmx is that you might want to use some feature that is specific to pdf TEX.

A sample input file is as follows:

\documentclass[12pt]{article}
\usepackage{ums}
\begin{document}
TR HER 3 B D £,

\end{document}

The commands you need to run to obtain a PDF document from a shift-JIS
format file using pdflfTEXare as follows.

topdftex source.sjs tmp.sjs

pdflatex tmp.sjs

When you run topdftex, the resulting file tmp.sjs should look like this:

\documentclass[12pt]{article}

\usepackage{ums}

\begin{document}
\UMS{79C1}\UMS{306F}\UMS{9B5A}\UMS{306B}\UMS{8208}. ..
\end{document}

To set up the ums package you need to run the batch jobs in the following two
directories

C:\usr\local\share\texmf\fonts\typel\public\omegaj\msmin
C:\usr\local\share\texmf\fonts\typel\public\omegaj\msgoth

to create all the .pfb files. This in turn requires you to intall the W32TeX Omega
packages.

pTEX is the most popular solution in Japan and, as such, has plenty of Japanese-
specific macros available. Judging from the questions on the TEX newsgroup,
comp.text.tex the cJK package is the most popular solution outside Japan. XFTEX
describes itself as experimental software whereas pTEX has had many years of field
hardening. Both the cJk package and the XHIEX system support writing systems
other than Japanese whereas pTEX only supports Japanese in addition to those sup-
ported by ordinary TgX.

6 Creating a document

6.1 Plain pTEX

A remarkable feature of pTEX is that you can enter Japanese text in-line with West-
ern text without any extra markup. pTEX handles all the font switching internally.
Here is a simple document in plain pTEX. Save the file in Shift-jis (.sjs) format.

The Japanese symbol for fish is .
\bye

6.2 pBIEX

Using pIATEX is no more complex; again pATEX handles everything for you. The
only difference is that if your document is intended to be read as being mainly
Japanese you should use

\documentstyle{jarticle}
instead of
\documentstyle{article}

This makes the output caption figures with [X| instead of Figure and so on. Here is
a simple example:

\documentclass{jarticle}
\begin{document}

BT TIEH D FHEA,
\end{document}

7 Viewing documents

Once you have written your pTEX or pBIEX source file you compile it in the
obvious way:

c:\work>ptex my_document.sjs
or
c:\work>platex my_platex_document.sjs

The resulting file is called my_document.dvi. However, the file format is not
standard pv1 so the standard versions of dvips and dvipdfm will not be able to convert
it into a viewable format. Because of this pTEX is not strictly speaking a version of
TEX at all. pTEX does not pass the trip.tex test either[s]; this disqualifies it from
being a true TEX. However, you are unlikely to notice any problems in practice.

7.1 dvipdfimx

To convert your .dvi file into PDF format, run it through dvipdfmx. This program
comes with the W32TeX installation and does not need any configuration. Run
the following two commands and, assuming you have bound .pdf files to Adobe
Reader, your document should appear on the screen.

c:\work>dvipdfmx my_platex_document

c:\work>start my_platex_document.pdf

7.2 dvipsv

The dvipsv program is a version of dvips enhanced to handle the pTEX .dvi format
and embed the TrueType fonts in the document. If you want PostScript output
then this is probably the one to use. It produces large output files because of the
embedding. Obviously, you need Ghostscript and Ghostview installed to view the
output.

c:\work>dvipsv my_platex_document

c:\work>start my_platex_document.ps

7.3 dvipsk

There is a bit of naming convention confusion here. Radical Eye now call dvips
dvipsk. However W32TeX calls the executable for the standard, non-pTEX version
of dvipsk dvips.exe. The executable for the version of dvipsk that can handle pTEX
output is called dvipsk.exe.

The advantage dvipsk.exe has over dvipsv.exe is that it produces smaller out-
put files and runs more quickly. The disadvantage is that it does not embed the fonts
in the output so you need to have the fonts installed on the system where you are
going to view the PostScript file. Furthermore, if you install a new Japanese font
on your system then you need to modify your Ghostscript configuration files before
you can view your new document. This is covered in detail in a later section.

W32TeX also includes a program called udvips. It appears to produce output
identical to dvipsk.

8 PDF bookmark entries

You have to do a bit of extra work to get PDF bookmarks to work in Japanese
script. The PDF special tounicode is the key. For plain pTEX the source would look
like this:

\def\bookmark#1{\special{pdf: out 1 << /Title (#1) /Dest
[@thispage /FitH @ypos 1 >>}}
\special{pdf:tounicode 90ms-RKSJ-UCS2}

\bookmark{ H KF& 1}
\bye

and in in pBITEX

\documentclass{jarticle}

I0

\def\bookmark#1{\special{pdf: out 1 << /Title (#1) /Dest
[@thispage /FitH Qypos 1 >>}}%

\AtBeginDvi{\special{pdf:tounicode 90ms-RKSJ-UCS2}}

\begin{document}

\bookmark{ H Ak 1}

Hello

\end{document}

This technique works for annotations (sticky notes) in dvipdfm too. For plain
pTEX source it would look like this

\special{pdf:tounicode 90ms-RKSJ-UCS2}

RHRBPHR
\special{pdf: ann width 3.0in height 36pt
<< /Type /Annot /Subtype /Text
/Contents (HARGE) >>}
Blah blah blah
\bye

There should be an annotation just here on this page.

E

Determning whether tounicode works for other dvipdfmx contructs too is left as
an exercise for the reader. The following standard hyperref package code placed in
the preamble to a document will produce PDF bookmark entries:

\special{pdf:tounicode 90ms-RKSJ-UCS2}

\usepackage [dvipdfm,bookmarks=true,?
bookmarksnumbered=true,bookmarkstype=toc, %
colorlinks,linkcolor=blue,urlcolor=blue] {hyperref}

9 Installing new kanji fonts

The default installation of W32TeX appears to use Ms Mincho and Ms Gothic as its
only fonts. However, if you use dvipdfmx you actually see the Adobe Reader fonts;
dvipdfmx writes the pDF file specifying the Adobe Reader fonts as substitutes. To
get the real Ms Mincho and ms Gothic fonts you need to run

dvipdfmx -f msembed.map file.dvi

II

鮭のほうが酒より好きです。

This results in a larger PDF file because the font is now embedded within it.

When I first started using pTEX I was grateful to be able to typeset Japanese at
all; it seemed greedy to want to use other fonts. However, after using pTEX for a
while you might want to use a completely different font. It is possible to install new
Japanese TrueType fonts into W32TeX. This section explains how.

9.1 Awvailable fonts

There are dozens of free Kanji fonts out there. Do a web search to find them.
Epson in particular have a bundle of several Japanese fonts that they give away. Try
searching for epkyouka.ttf. One of the most famous free TrueType fonts comes
from Netscape and is called Cyberbit.

Eromlx
If you are learning kanji then it’s worth looking at the kyoukasho (£} fonts.

These are the Japanese equivalent of the Western ‘Schoolbook’ fonts and are de-
signed explicitly for teaching Japanese. A Japanese calligraphy teacher recommended
the commercial Iwata Gakusen Kyoukasho (G —-A U & H K#F}E(E) font to me.
This font costs about 12,000 .

9.2 Installing into pTEX

First install the font in windows. Let’s call it epkyouka.ttf. You should have a file
called c:\windows\fonts\epkyouka.ttf on your system. In your local texmf tree
(such as c:\work\texmf} copy
fonts\tfm\dvips\rml.tfm to fonts\tfm\dvips\epk.tfm
copy
fonts\tfm\ptex\minl0.tfm to fonts\tfm\ptex\schoolbook.tfm
and copy
fonts\vf\ptex\mini0.vf to fonts\vf\ptex\schoolbook.vf.

Open fonts\vf\ptex\schoolbook.vf in a text editor and change the three
letters rml to epk.

What we’ve done here is to create the .tfm files that pTEX uses for a new font
and to create a virtual font so we can view it.

Run mktexlsr (or equivalent) so that KPSE knows about your new files. You
should now be able to run a file like the following through pTgX.

\font\schlbk=schoolbook at 12pt
\tenmin fiE{Xf T,

\schlbk fif:3 AT,
\bye

12

9.3 dvpdfimx

These metric files are not much use unless you can view the output. To do this
you must tell dvipdfmx about the new font. The best way to do this is to modify
msembed .map. Copy it into your local texmf tree and add the following line

epk H :0:epkyouka
Run mkstexlsr again and then do

dvipdfmx -f msmebed.map test.dvi

You should get the pDF file. When you open it with Adobe Reader, the document
properties should tell you that the MS Mincho and Epson Kyoukasho fonts are both
present in the document.

There are some advanced options you can put in the msembed.map file. For

example
epk H :0:epkyouka,Bold

gives you a bold version of the font. BoldItalic and Italic are also valid keywords
here. My experiments indicate that this doesn’t work very well; the fonts appear
in the modified form in Adobe Reader but do not come out on the printer. This
is no great loss; ransom-note typography is best left alone. Some TrueType fonts
contain multiple versions of themselves in the same file. You can access the different
versions by changing the number between the colons:

xyz H :1l:complexfont

The H refers to whether the font is for horizontal or vertical typesetting. I
haven't tried installing a vertical version of a font.

9.4 dvips

It 1s also possible to use TrueType kanji fonts with dvipsv and dvipsk.
For dvipsv, locate psfontsv.map, take a copy into your local texmf tree and add
the following line.

ekn r-epson-kyoukasho <‘r-epson-kyoukasho

Next locate vfontcap in the main texmf tree, save oft a backup and modify it
where it is (RPSE doesn’t seem to find it if [put it in my local texmf tree) to add the
following lines.

13

r-epson-kyoukasho:\
:ft=freetype:\
:ff=c\:/windows/fonts/epkyouka.ttf:

Run mktexlsr and then dvipsv test.dvi and you should get a PostScript
version of your document.

If you want a PostScript file that does not embed the kanji font then you can
also configure dvipsk to use a new TrueType font. First update psfonts.map to
include the line

ekn epson-kyoukasho-H

Then update the file cidfmap in your Ghostscript installation (try looking for
c:\gs\gs8.51\1ib\cidfmap) to include the following line (split into two lines here
so it will fit on the page)

/epson-kyoukasho << /FileType /TrueType /SubfontID O /CSI
[(Japan1) 3] /Path (C:/WINDOWS/fonts/epkyouka.ttf) >> ;

I find that documents created this way take a long time to open in Ghostview.
Furthermore, one document with dozens of different fonts in it that I tried crashed
Ghostscript. Therefore I can’t recommend this method.

10 Vertical typesetting

Traditionally Japanese is written from top to bottom and from right to left. One of
the strengths of pTEX is that it has native support for this format.

To typeset a document vertically in plain pTEX use \tate at the start of the
document and declare the font you want to use (\tentmin is the only one I know
works):

\tate\tentmin
FTA XU ANTT,
\bye

Then convert the .dvi file to a landscape PDF as follows

dvipdfmx -1 sample

In Japanese tate %}‘E means vertical.

As you would expect from plain TEX, the rest of the document formatting needs
work before you can use this method for a real document. However, using pIETEX
you get everything done for you. All you have to do is change the

14

o H S
S AR

Figure 1: Vertical Japanese.

\documentstlye{jarticle}
in the preamble to
\documentstlye{tarticle}
For example

\documentclass{tarticle}

\begin{document}
BITATIEH Y A,
\end{document}

gives you something like Figure 1.
Again you need to convert the .dvi file to a landscape PDF as follows

dvipdfmx -1 sample

That’s right, you can take your horizontally-orientated document and convert it to
vertical format by changing just one character.

11 Ruby

Ruby is the typographical name for furigana. These are small kana characters writ-
St
ten near a kanji to clarify its reading, like this: £.

11.I Ruby in pBTEX
To use ruby in your pIATEX document include

\usepackage{sfkanbun}
\usepackage{furikana}

IS

b > b *3 b j? b b }3 5 5
BeoE R BEogr BE oA g A BE o mE
w0 owe W B WO el w0 e g

. Lo WY omgs BIDoggc BD BAL Son e
50 v [l g e s My g fan L R

] N AN A5 < ANG =

< 5 <

< IS
A & ® R B \ b &
fai B A B B RE R g Ay
» " v ~ U
;%I\HJ :%&; 0 jt&; jtzf;

Figure 2: Demonstration of ruby macro syntax

in your pITEX document’s preamble. There are two macros and a variety of options.
The following code yields the example in Figure 2.

\documentclass[12pt]{tarticle}

\usepackage{sfkanbun}

\usepackage{furikana}

\begin{document}

\kana{FAFTH M RKI{D72 L LASA I D72\ ¥a}\par

\kana [0] {FA}{#>7= L F\kana [0] {HTHIH L A5 A F\kana [0] {F I & 2372}

\kana [0]{ K}{\ ¥} \par
\kana [1]{FA}{ 472 L \kana [1] {HTEIH L A5 A \kana [1]{F I S 272}
\kana [1]{ K}{\ ¥} \par
\kana [2] {FA}{ 4272 L \kana [2] {HTHH L A5 A F\kana [2] {F I Z 272}
\kana [2] {R}{\ ¥2}\par
\kana [3] {FA}{#>7= L }\kana [3] (¥R L A5 A} \kana [31 {fI{ S 272}
\kana [3]{ R} ¥2}\par
\kana [4] {FA}{#>7= L }\kana [4] {FTRAI L A5 A} \kana [4] {fI{ S 2723
\kana [4]{ R} ¥2}\par

\Kana{fh, &7, B, fa, R¥{b7=L, LASA, 7R, Wik \par
\Kana [0]{F4, 7, [, i, RIH{b7=L, LASA, EN7R, Wil \par
\Kana [1]1{F4, 7, B, fa, R¥{b7=L, LASA, N7, Wi} \par
\Kana [2]1{f4, &7, H, i, R¥{b7=L, LASA, Eh7e, WL} \par
\Kana [3]1{F4, #T, B, fa, R¥H{b7=L, LASA, N7, V) \par
\Kana [4]{FL, 7, [, f, RHb7=L, LASA, EN7R, Wilar\par
\end{document}

11.2 Ruby in plain pTEX

It is possible to modify the file furikana.sty to allow you use its ruby macros in plain
pTEX. Here is a summary of what you need to do (I don’t recommended this for

16

beginners):

— Copy furikana.sty to plain_furikana.tex. Do the edits that follow on the
latter file;

— Remove the lines that start \typeout;

— Remove the paragraph before the line that reads \let\rubykatuji=\tiny;

— Change \@s@sf to \asasf throughout;

— Remove the \kana macro;

— Change the \k@na®@ macro so that it always takes five parameters and rename it to

\kana. Parameter #1 is the ruby style, parameters #4 and #5 define the font and size
used for the ruby. Add

\font\tiny=#4 at #5pt\def\@rubykatuji{\tiny}\def\rubykatuji{\tiny}

to the macro after the line \xkanjiskip=0pt; and
— Remove \endinput at the end of the file.
You can then use ruby in a plain pTEX document by adding

\input plain_furikana.tex
near the start of the document and entering things like
\kana{1}{FA}{#>7- L }{epkyo}{63}

This works in both horizontal and vertical modes. You may want to define your
own two-parameter macro that sets the the other parameters automatically. \Kana
remains a pETEX-only macro.

11.3 Ruby in plain non-pTEX

The plain pTEX version of the furikana.sty macro described in the previous sec-
tion requires that you use pTEX. The following macro allows users to use ruby in
any version of TEX. An obvious application is to typeset ruby when using XFIEX.
The furikana.sty macro does not work in pISTEX \section{} headings, so this
macro could also be useful when typesetting with pIATEX. However, this macro
results in corrupted PDF bookmarks when combined with the \hyperref package.
This macro could even be used with jTEX or plain TEX (fonts permitting).

\font\tinyjapanese=minlO at 6pt
\def\furigana#1#2{\leavevmode,
\setbox0=\hbox{#1}\setbox1=\hbox{\tinyjapanese#2}/
\ifdim\wd0>\wd1\dimenO=\wdO\else\dimenO=\wd1\fi},
\hbox{\vbox{\hbox to\dimenO{\tinyjapanese\hfil#2\hfil}
\nointerlineskip\hbox to\dimenO{\hfil#1\hfil}}}}

17

The furikana.sty macros produce more elegant output and provide more format-
ting flexibility than this macro:

No ruby: HATE 2
CIE A RS
furikana.sty: H AR T2

s D
\furigana{}{}: HAT f#) W7

You are likely to want to tweak the macro described in this section to suit your
particular application.

12 Circled characters

Japanese text (especially reference works) sometimes makes use of characters with
circles around them. The PSTricks macros \psCirclebox and \pscirclebox work
well for producing Japanese characters with circles around them. The disadvantage
is that you then have to produce your document as a Postscript file rather than a pDF
file. The best way to handle this is to use Ghostscript to convert your document to
pDF like this:

gswin32c -sDEVICE=pdfwrite -sOutputFile=circle.pdf
—-dNOPAUSE -dBATCH -q circle.ps

The output looks bad in Adobe Reader but looks fine when you print it.

13 dvipdfimx and PSTricks effects

The fancy text colouring and rotation dvipdfm(x) and PSTricks provide work just
as well with Japanese text as they do with Western text. The following sample code
produces the garish example in Figure 3

\documentclass[11pt]{article}
\usepackage{pstricks}
\usepackage{pst-grad}
\usepackage{pst-plot}
\usepackage{pst-text}
\usepackage{pst-char}
\begin{document}
\begin{pspicture}(0,-1)(8,2)
\pscharpath[linecolor=Yellow,%
fillstyle=gradient,’
gradbegin=Yellow,%

18

Figure 3: Using PSTricks on Kanji.

gradend=Red, %

gradmidpoint=1,%

gradangle=5]7

{\font\tmp=goth10 at 1.5cm\tmp HEHI}
\end{pspicture}

\end{document}

14 Context

I have not been able to persuade pTEX to work with the ConTEXt macro package.
However, ConTEXt does provide support for XgTEX.

15 Mixing vertical and horizontal text

This might seem like an exotic requirement and I have to admit I'm unlikely to
use it myself. However, Japanese newspapers often mix vertical and horizontal text.
You can do this in pTEX using minipage:

\documentclass{jarticle}

\usepackage{plext}

\begin{document}

FTFD I E T, FITRDIFE T, FITRDBEE TT,
FFFRDGF & TY, RATMADAF & T, FATMADIFE TTS

19

FITHDGF & TT, FATHDLFE TT, FAT
R E T, FUTRARLFE T, RN
& TY, FIUTHADLE T,

5 & B
01X
i
-(:\
E
)
y
¥
*
A

ST T ABTE O EH
FARTEE OFHSFEAR

TR & T, AP E T, T
D E T, FATMADLFE T, BTN
I & T, FUTRDEFE T,

Figure 4: Vertical Japanese within horizontal

\begin{minipage}<t>{16zw}

ITATIEH D FHA, BUTATIIH D FHA,
IR TIEH Y T A, BITHRTEIHY FHEA,
\end{minipage’}

FATRDL & T, RITANL& T, FAUTHENFETT,
RN X CTF, FIFaNgE T, FAUTADH X T,
\end{document}

Which yields something like Figure 4. The full syntax for minipage is described
in the platex.tex format file as follows:

\begin{minipage}<dir>[pos]{width}...\end{minipage}

dir: t ... force tate mode.
y ... force yoko mode.
z ... rotate 90 degree (ignored at yoko mode).

Yoko means horizontal mode. This syntax encourages the following test:

20

\documentclass{tarticle}
\usepackage{plext}
\begin{document}

FNFRDIF & T, FATHDLFE T, FITRDBEFE TY,
FFFRDGF & TY, RATMADAF & T, FATRDAIFE TTS

\begin{minipage}<y>{16zw}
BT TEH Y A, BITATIEIHY THA,

fHITATIEH Y FHA, BITHTEHY THA,
\end{minipage}

FFAD ;& T, RATMDAF & T, FATRDAIFE TTS
FMIRNGF & T, RITRDAFE T, RATMADBIFE TT,

\begin{minipage}<z>{16zw}
BIIATIED Y FHA, BITATEIHY £HA,
BT TR FEA, BUTATIIHY THA,
\end{minipage}

FAITRDT & T, RITANGX T, FUTANFE T,
RN X CTF, FIFangE T, FAUTADHETT,
\end{document}

Which yields something like Figure s.
Note that a zw is 2 new unit of width introduced by pTgX.

16 Kanji font selection in BTEX

One way to make the default kanji text font in a BTEX document be a new one is
brute force: \font\normal=epkyo at 13pt\normal. However, BTEX has a system
for defining font sizes consistently and it is more architectural to use that. I think
what follows is pretty much the same as you’d do for a new Western font except
that \rmdefault is replaced by \mcdefault.

What you need to do is copy jylmc.fd and jtimc.fd from your installation
pTEX tree to your local texmf tree (I put mine in ptex\platex\base) and rename
them as jylep.fd and jtlep.fd, where ep represents your new font. Change all
the instances of mc in the files to ep. Then you need to change the following code

\DeclareFontShape{JY1}{mc}{m}{n}{<6> <6> ... <10> sgen*min
<10.95><12><14.4><17.28><20.74><24.88> minl0

21

BOERRWE ERBERIRWYE EBEQRRWYS EBE
RENVR ERBERRWUF BEERIRVYERS
bn) o
&
e
S
IS
I
P P
P 45 M
W/tumm/
L5 8
PP L
bt
& P &
PR
ERE .
BOBELERWIR @RBERIRWIR EBERIRWIR EBE
[RENVR ALBERIRWYF ELERIRVYERS

A TIEh Y FHA, BlTATIE

HYFHA, BUITATIEIH Y A,

XA TIEH Y THA,

HBBERIRVV EDERRWVR TDERRWER E0E
SRV BBERRWVAT @ BERR0ARC

Figure 5: Horizontal Japanese within vertical.

22

<-> minl0

H}

to
\DeclareFontShape{JY1}{ep}{m}I{n}{<-> sx[1.3] epkyo}{}

Obviously you should replace ep here with your own font’s name. The [1.3] is
the magnification over the design size of the font (deliberately set high here at 130%
because the Epson Kyoukasho font is rather small). The s* means, ‘I don’t care
what size this ends up being so BTEX should not warn me when it sees sizes it does
not recognize’. The epkyo is the name of your font, which should exist as a .tfm
file. All those numbers in pointy brackets and the sgen*min in the original are to
do with fized sizes of the font and appear to be unneccesary in modern installations.

Once you've done this, create a file called myfont.sty in your local texmf tree
and put something like the following code in it.

\ProvidesPackage{epkyo}
\renewcommand{\mcdefault}{ep}
\endinput

Then run mktexlsr, put \usepackage{epkyo} in the preable to your document and
you should get your new font. If you want to change your gothic font rather than
your mincho font then the above should work substituing ¢t for mc throughout. 1
haven't tried it.

17 Missing font shapes

You may find that pBETEX complains about missing font shapes when compiling
documents. The messages are benign because the the pBTEX font code sensibly
substitutes other fonts in their place. You can prevent these warnings by adding the
missing shapes to the files jtlep.fd and jylep.fd described in section 16 so that

they look like this:
\DeclareFontShape{JT1}{epHm}I{n}{<->s*[1.3] epkyo}{}
\DeclareFontShape{JT1}{epHm}I{scH<->ssub*ep/m/n}{}
\DeclareFontShape{JT1}{ep}t{bx}{n}{<->ssub*gt/m/n}{}

and this:

23

\DeclareFontShape{JY1}{ep}{m}{n}{<-> s*[1.3] epkyo}{}
\DeclareFontShape{JY1}{ep}{m}{sc}{<-> ssub*ep/m/n}{}
\DeclareFontShape{JY1}{epHbxI{n}{<-> ssub*gt/m/n}{}

It’s the middle line in each of these that is new. pBTEX also complains about the
gothic kanji font shapes that one might have thought it would have defined itself (the
file that does this seems to be plfonts.dtx). The myfont.sty file is a convenient
(albeit unarchitectural) place to fix this up. You can do so by adding the following
two lines so it looks something like this:

\ProvidesPackage{epkyo}
\renewcommand{\mcdefault}{ep}
\DeclareFontShape{JT1}{gt{m}{it}{<->ssub*gt/m/n}{}
\DeclareFontShape{JY1}{gtHm}{it}{<->ssub*gt/m/n}{}
\endinput

If you are not setting up your own fonts and just want to suppress warnings in a
document compiled using the default fonts then another approach (the one used in
this document) is to define a new style file that declares the font shapes that pIETEX
is complaining about. Mine is called noswarn.sty:

\ProvidesPackage{noswarn}
\DeclareFontShape{JT1}{gt}H{m}{it}{<->ssub*gt/m/n}{}
\DeclareFontShape{JY1}{gt}{m}{it}{<->ssub*gt/m/n}{}
\DeclareFontShape{JT1}{mc}{m}{sc}{<->ssub*gt/m/n}{}
\DeclareFontShape{JY1 {mc}Hm}{sc}H<->ssub*gt/m/n}{}
\endinput

Put \usepackage{noswarn} in your document’s preamble and run mktexlsr. Next
time you compile your documents the warnings should have stopped. If you still
get some warnings then try adding the shapes that pBETEX is complaining about to
the style file.

18 Underlined Japanese text

Though underlining text is considered bad typography, it is easy to do in pTEX if
you are in horizontal mode. Just use

{$\underline{\hbox{fii % 72 T TF J\ }}$}

to get il A LRV T RSV,
[have seen pIBTEX packages that do underlining but all the documentation was

in Japanese. I think they handle vertical format text.

24

19 Warichu

AT
Warichu or F| ¥ {F¥ is a form of inserted notes within Japanese text. The characters
are half the height of the main text. This facility is available in pIATEX using the
warichu.sty package. Figure 6 shows an example of text that includes warichu. 1
generated Figure 6 from the following code:

H 54 T \wari chud IR E21T T, /NEAE HWTT, I E T,

In general, the syntax is
\warichu{X}{Y}Z

where X denotes the last ordinary character before the notes, Y denotes the notes
themselves and Z denotes the characters that come after the notes.

This typographical device is more commonly used in vertical format. In tate
mode one uses the macro \twarichu rather than \warichu. I generated the example
in Figure 7 using the above code with \twarichu substituted for \warichu.

The warichu.sty macros \warigaki and \twarigaki are similar to \warichu
and \twarichu except that they only take one parameter and they omit parentheses
from the result. See Figures 8 and 9 for examples. I generated Figure 8 from the
following code:

HH e T \warigaki {IRHEEEZ T T, /DB E HWTT, IB4FE T,

There are two limitations to the warichu. sty package. First, it does not support
line-breaking for warichu; all your notes have to be on a single line. Only painstaking
manual tweaking could produce multi-line warichu. Second, by default the font used
for the warichu text is simply a scaled-down version of the main text font. Ideally the
weight of the strokes in the warichu text would match that in the main text. A good
knowledge of BTEX and pBTEX font management would probably allow an expert
user to get around this problem. This could be done by switching to a weightier
version of the main text font for the warichu text. 73 AL > T,

20 References

1] W32TeX download page in English: http://www.w32tex.org
Ken Lunde. CJKV Information Processing. Second Edition, O’Reilly Media, 2009.

[1]

[2]

[3] http://www.physics.ucla.edu/ grosenth/jwpce.html
[4]

J

4] Yasuki Saito. Report on jTEX: A Japanese TEX. TUGboat Volume 8, Number 2,

uly 1987.
[5] http://oku.edu.mie-u.ac.jp/ okumura/texfaq/japanese/ptex.html

25

http://www.w32tex.org
http://www.physics.ucla.edu/~grosenth/jwpce.html
http://oku.edu.mie-u.ac.jp/~okumura/texfaq/japanese/ptex.html

I e AR AR
QUEEIT)

BT

Figure 6: An example of horizontal warichu.

e

HEHSEEHE

iy

i
e
el

om%'d%‘f‘ﬁ

Bl PR A
b Al I T

&
v

2 (

Figure 7: An example of vertical warichu.

M op g AR R

BRI, oy
ol R R

T

Figure 8: An example of horizontal warigaki.

Figure 9: An example of vertical warigaki.

26

	1 Introduction
	2 Changelog
	3 Acquiring and installing pTeX
	3.1 Installation on Linux

	4 Entering Japanese text
	4.1 Encodings
	4.2 JWPce
	4.3 Adobe Reader
	4.4 Japanese Fonts 日本語の字体

	5 Other Japanese-Capable TeX Systems
	6 Creating a document
	6.1 Plain pTeX
	6.2 pLaTeX

	7 Viewing documents
	7.1 dvipdfmx
	7.2 dvipsv
	7.3 dvipsk

	8 PDF bookmark entries
	9 Installing new kanji fonts
	9.1 Available fonts
	9.2 Installing into pTeX
	9.3 dvpdfmx
	9.4 dvips

	10 Vertical typesetting
	11 Ruby
	11.1 Ruby in pLaTeX
	11.2 Ruby in plain pTeX
	11.3 Ruby in plain non-pTeX

	12 Circled characters
	13 dvipdfmx and PSTricks effects
	14 Context
	15 Mixing vertical and horizontal text
	16 Kanji font selection in LaTeX
	17 Missing font shapes
	18 Underlined Japanese text
	19 Warichu
	20 References

